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MODIFIED GELFAND-TSETLIN PATTERNS
LATTICE PERMUTATIONS, AND SKEW-TABLEAU
POLYNOMIALS

James D. Louck o
Los Alamos National Laboratory, Theoretical Division
Los Alamos, NM 87545 USA

August 29, 2002

A modification of the well-known Gelfand-Tsetlin patterns, which are one-
to-one with Young-Weyl standard tableaux is introduced. These new patterns
are in one-to-one correspondence with skew-tableaux, and with a slight mod-
ification can be used to enumerate lattice permutations. In particular, the
coupling rule for angular momentum takes an elementary form in terms of
these modified patterns. These interrelations will be presented, together with
an outline of the construction of .a class of polynomials that generalizes the
skew Schur functions.



1 Introduction and Review of Combinatorial Concepts

It is well known that semistandard Young-Weyl tableau of shape A € Pary,
where Par,, denotes the set of all partitions A = (A, Ao, ..., An), A1 2 Ay 2
... 2 An 2 0, having n parts, counting 0 as a part, is bijective with the set
of Gelfand-Tsetlin patterns of shape A. The purpose of this article is to show
how this resull generalizes to a bijection between semistandard skew tableau
of shape A ~— u and skew Gelfand-Tsetlin patterns of shape A — 1, structures
that are defined below. This result, in turn, allows the generalization of the
well known D*—polynomials'~* to skew D**—polynomials. An consequence
of this generalization is that the trace of the skew D*»/#—polynomials yields the
skew Schur functions s),,, just as the trace of the ordinary D*—polynomials
yields the ordinary Schur functions sy. We also formulate the concept of a
modified Gelfand-Tsetlin patiern, and show their relation to lattice permu-
tations and Littlewood-Richardson numbers. The properties of Littlewood-
Richardson numbers are very important for the study of composite holis-
tic multiparticle quantum systems to which the D*—polynomials and the
DME_polynomials have applications through multiple Kronecker products of
such polynomials and their reduction into irreducible forms. We do not address

the latier in this article, but instead review and set forth the combinatorial
approaches to the subject.

The interest in formulating tableau results in terms of Gelfand-Tsetlin pat-
terns originates from the Weyl® group-subgroup significance of the conditions
associated directly with Gelfand-Tsetlin® patlerns, and the subsequent use of
such patterns in numerous physical apphcations. We begin by a review of
severa] well known results,”

2.1 Semistandard Young-Weyl Tableauz and Gelfand-Tsetlin Patterns

Semistandard Young- Weyl tableau (SSYW ): A partition A € Par,, is some-
times called a shape.A Young-Weyl tableau is a shape A € Par,, in which the
integers 1,2,...,n are distributed among the |A| = A\; +- -+ Xy, boxes, one in
each box, according to the rules:

one integer/box Mo weakly increasing across each row
ne integer/box Ao
| strictly increasing down each column
one integer/box An
Notations:

T, = set of all semistandard tableau of shape A,

o = weight of semistandard tableau = (ay,...,a,), @ =number of i’s,
Ty () = set of all semistandard tableau of shape A and weight a,

W, = set of all weights of semistandard tableaux of shape A,

K (A, ) = multiplicity of a weight o € W,.



Gelfand-Tsetlin (GT') pattern:  Let p € Par,,0 € Par,_y,1 <717 < n.
The notation p > ¢ means that the pair of partitions p and o satisfy the
betweenness conditions:

PM201 202022 20012 p 20
Two-rowed presentation:

(Pl P2 Ps o Pre f)r)
o 0y e Oy )

The geometric placement of numbers is intended to suggest "betweenness.” A
GT pattern of shape X is a sequence of n partitions A, 7, - v, pu satisfying
A € Par,, 7 € Par,,_y, - v € Pary, u € Par,
AM T oo V> L
A GT patiern of shape A may be presented as triangular array with n rows:

AoAe o Al Ag
T T2 . Trn—1
, y AT e =V
Y
H

The %‘eometric placement of these partitions is intended to indicate "between-
ness.

Notations:
Gy = set of all GT patterns of shape A € Par,,
a= (|p], V] = |ul,. s A= 7)),
Ga(a) = set of all GT patterns of weight a ,

W, = set of all weights of GT patterns of shape A,
K\, o) = multiplicity of a weight oo € W),

The significant result is the bijection between the set of semistandard
tableaux of shape X and the set of GT patterns of shape X of the same weight,

'H')‘(OA) B]J:M]ON G,\(Q’)

as given by the following rules:

9

. M oA o A A
A1 integers ] ! " 272 S m 1Tn_1“
Ay integers | PN .
: VT Va.
A, integers| h

mapping Tule: The shapes (partitions) in the GT pattern are obtained by
sequential removal of integers from the semistandard tableau:

A is the shape of the tableau;



T is the shape of the tableau obtained by removing all n’s;

v is the shape of the tableau obtained by removing all 3's;
i is the shape of the tableau obtained by removing all 2’s;

wnverse rule: The semistandard tableau is obtained from the G7" pattern by
the rule

insert 1's in the shape y;
followed by 2's in the new boxes contained in shape v and not in shape y;

followed by n’s in the new boxes contained in shape A and not in shape 7.
Example:

The relation between SSY W tableaux and GT patterns of the same shape
is illustrated for A = (6,5, 3,0) by

17111 6 5 3 0
2(314] 50471
3414 3

The bijection described above extends, of courée, to the full sets of semis-
tandard Young-Weyl tableaux and Gelfand-Tsetlin patterns of shape A :

BIJECTION
Ty " =="" G,.

2 The D*~Polynomial

One of the significant applications of SSYW tableaux,or, equivalently, of GT
patterns is their role as indexing sets or labels of a class of polynomials that
arise in many different contexts. These polynomials have been discussed in a

number of articles."~®7 Some of their principal properties are recalled here for
the purpose of showing how they recur in the context of skew GT and modified
GT patterns in Sections 3 and 6.2 .

2.1 Basic Orthogonal Maclourin Polynomials
We adopt the following notations and definitions:

A n Qij
=125
! |
Al ey i’
211 212 *** Rin

] 291 %92 v Zop
variables = Z = .

Znl 2n2 " Znn



Qyy a1 - Qp 03

A2y Ay 0 An vy
CXDOTI("ntC == pen s .
Upy Apo > Opp Qy,
a; a,Q (1:,
M yn(a, o) = {n X n arrays A
row sums = ¢, column sums = &, |a| = |o/| = p}

The Maclaurin polynomials are homogeneous as follows:

n
& = Z"’ij inz = (21,22,...,2%n) = row i of Z,
J=1

n

oy = _S_ aij in 27 = (215, 295, .. ., 2nj) = column j of Z.

=]

The Maclaurin polynomials are orthogonal in the inner product ( , ) described
in detail by Louck.?

(ZA,ZB) = §(A, B)A.
Basic Orthogonal D*— Polynomials
We now define a class of invertible rea) linear transformations of the Z4 poly-

nomials that preserve their homogeneity properties in the rows and columns
of the variable matrix Z :

m/ . m' ZA
D(%)(Z)= > c(é)m)m,

AeM?,  (o,0)

ZA 1 m’ m'
i £ (R )we()e
m,m/€G\{a,0’)

The notations in this definition are:

1. (%) is a Gelfand-Tsetlin GT pattern, and (') is an inverted GT pattern.
We now write a GT' pattern in the more detailed form

M A . A,
A Mmin-1 Manp-1 ' Mp-in-1
() - f ’
my2 Moz
mi1



in which row j is given by
my = (Mg, My, Myy) € Pary, i =1,2,... .0, = m,.

2. a,a’ are weights of the G'T' patterns:

[ /\ 12 /\ / / /
= W(‘ = (g, Qg ..., 0p), & =W ] = (0, ah,...,0n).

m.

3. Gi(a, o) is the set of double GT patterns of weight (o, @') and partition
A with cardinality

|G, @) = K(X, a)K (A ).

4. M()) is the invariant normalizing factor defined by

g=]

M(X) = (ﬁ(z\i +n - z)‘) J12V - (n — 1)1 DimA,

in which DimA is the Weyl dimension formula:

DimA = |G,| = ( H (Ai =X+ - z)) JU20 - (n = D)

1<i<j<n

The orthogonality and normalization of the D*—polynomials are expressed by

7n/// ml
D X\ (Z), D AI (Z) = 5m,m”5m',’rn”’ 5)\7)‘1M(A).
'r’,LI/ m

2.8 Combinatorial Definition of the C— Coefficients

m' m/
(D ( )\;;”67- ) (Z), 2;D ( % ) (Z))
<A+eT | 45r | ></\+”ng Itﬂl >

e, = unit row vector of length n = (0,...,0,1,0,...,0),1 in position 7

Then? quantities t;; are called fundamental shift operators. The coefficients

<)\+GT | tir | >,’i,j=1,2,...n

are fully defined as functions over arc digraphs (earlier called the pattern

calculus®). The above matriz element relation and the arc digraphs deter-
mine uniquely the D*—polynomials. It is the algebra of these fundamental

6



shift operators that places the construction of the C—coefficients, hence, the
D= polynomials on a fully combinatorial basis.®

For the purposes of this article, we henceforth take the D> —polynomials as
fully known. It is useful to summarize some of their principal properties.

2.4 Summary of Structural Properties of the D~ Matrices
Matrixz form of basic polynomials:

VA

DNZ) = Z ol C*(A),cach X € Par,
AeMbh
Min = LJ M yn(e, ).
o0’ W),

In this relation, D*(Z) and C*(A) are matrices of dimension Dim()) given by
the Wey! dimension formula, and the coefficients in this matrix relation are
the Maclaurin monomials Z# /A!. The following properties offer but a glimpse

at the important structural properties of these matrices, whose elements are
the polynomials

whose rows and columns are enumerated by the Gelfand-Tsetlin patterns ( 7’1\1 )
and ( TQ,)

1. Multiplication of D*(Z) matrices:
DPMNX)DN(Y) = DA(XY),

for arbitrary matrices X and Y. A full combinatorial proof of this relation
can be given, which starts with the proof given in [Chen], and then uses
Pieri’s rule for multiplying certain of these polynomials.

2. Multiplication of C*(A) matrices:
C B
cHACMB) = Y { AB }C’\(C),
ceM?, . (am) .

where

A € M.,]:x.n(a, ﬁ),B E ngn(ﬁ)’)/))

and the structure constants are given by the double inner product of
Maclaurin polynomials [Italy].

{ AB }= (x4, (v2,(xv)°)) Jor



3. Matrix Schur function:

D*(Z)® D*(Z) ~Y_ cu,DNZ),
A

uv

in which the coefficients c;‘\'u are the Littlewood-Richardson numbers,

4. Diagonal properties:

D"(dz'ag(m], T2y e a‘Tﬂ)) = Z EB:E?] xgz T xznlh’()\.a)a
aEW,,
Ik(ne) = identity matrix of dimension K (), a),

D*(I) = Ipima-
5. Relation to Schur functions:
su(@)su(@) = 3 chaala),
Tra,ceD’\(diag(Axl, Ty ..., Tn)) = Sr(T)

6. Importance for physics: The matrices D*(Z) give all inequivalent integer
representations of GL(n, C) for Z € GL(n,C). Thus, the matrices D*(Z)
also give all inequivalent unitary representations of U(n) for Z € U(n).
Moreover, these matrices and their elements occur as state vectors for
composite physical systems and have a wealth of properties for various

choices of the variables Z. We will see some of this in the following sec-
tions.

3 Skew Tableaus and Skew Gelfand-Tsetlin Patterns

Semistandard skew Young tableau: Let \, pu € Par, with A\; > p;, 1= 1,2,...,n.
This condition is denoted A D u, and means that the shape p "fits inside” the
shape . The skew shape A — u refers to the shape of the "staggered” rows of
boxes that remain after de]eti\il,g all the boxes of shape u from the shape A. As
with a semistandard Young-Weyl tableau, the boxes in the shape A — u are
filled in with the integers 1,2,...,n with one integer per box such that the
sequence in each row is weakly increasing and the sequence in each column is
strictly increasing:

| A — i boxes |, weakly increasing across each row
shape l : Az — jig boxes |

removed : | stictly increasing down each column
| An — pn boxes |

Notations:

Ty/u = set of all skew tableau of shape A — p,
o = weight of a skew tableau = (o, ..., &), q; = number of i’s ,

8



Ta/u(e) = set of all skew tableau of shape A — u and weight o
W,/ (a) = set of all weights in T)/,(a),

W),/ = set of all weights in Ty,

K /(@) = multiplicity of weight o € W,y,..

Skew Gelfand- Tsetlin palterns: The notation p 2 0 means that the pair of
partitions p, o € Par, satisfy the betweenness conditions:
MZ2012p2032 2pp20,20.
Two-rowed presentation:
( PLP2 P3 c Pa-1l P )
o, 09 R Opn-1 On }°
A skew GT pattern of shape A — u, with 4 C }, is a sequence of n+1 partitions
AT, .., 1y 0 beginning with A and endin:% with p, all of which belong to Par,
and which satisfy the conditions A 217 2 --- v 3 u. A skew GT pattern of
shape A — 1 may be presented as a parallelogram with n + 1 rows:

/\l )\2 cee ’\n
T 7'2 PR Tn .
: ,Ad72-2v3n
LS ] T n
M1 2 o My

The placement of the entries in this configuration is intended to be suggestive
of the betweenness relations.

Notations:
Gy, = set of all skew GT patterns of shape A — p,
a = weight of a skew GT pattern = (aq,..., Q)

= (vl = lpl,-. . 7l = o], |AL = I71),
Gy/u(a) = set of all skew GT patterns of shape A — p and weight o,
Wy /u(a) = set of all weights in Gy/,(a),
W)/, = set of all weights in Gy,
K ,u(a) = multiplicity of weight a € W, .

These notations for weifhts anticipate that these sets are identical to those
defined for semistandard skew tableau.

Again, we have the bijection between the sets of semistandard skew tableaux
and skew GT patterns of the same weight, ‘

BIJECTION
Taula) 77 =" Gyju(a),

as given by the following rules:

—— Al A A
| Ay — p, integers | T Te o Ta
| A2 — pg integers]| :
E & K1 /{2 v nn
_ |An = pn integers) V1N1V2 N2. o .V”un



mapping rule: The shapes in the skew G'T pattern are obtained by sequential
removal of integers from the skew tableau:

A is the shape of the tableau;

7 is the shape of the tableau obtained by removing all n’s;

v is the shape of the tableau obtained by removing all 2's;

1 is the shape of the tableau obtained by removing all 1's;
ivz;;erse rule: The skew tableau is obtained from the skew GT pattern by the
rule

insert 1’s in the shape v — y; followed by 2’s in the shape k — v;
<+ followed by n’s in the shape A — 7.

Ezample: X = (6530), u = (3210) :

- 6 5 3 0
1]1]3] 6 4 2 0
1| 3[4 - 5 3 2 0

J24 5 3 1 0

The bijection described above extends, of course, to the full sets of semi-
s/,\tandard skew Young tableaux and skew Gelfand-Tsetlin patterns of shape
BIJECTION
Tos 777" Gayp,

.4 The DY*—Polynomials

It is somewhat surprising that the set of skew GT patterns Gy, can all be

realized as ordinary triangular GT patterns® in 2n rows corresponding to parti-
tions (A O™), A € P,,, with further specialization of the patterns, as we describe
in this section.

4.1 Relation between Skew GT Patterns and GT Patterns

We introduce the more detailed m;; notation as follows for a skew GT
pattern:

A Ay - An
Min-1 Mon-1 ' Mpn-i
[ M ] - 3 ,
m my 2 Maa '+ Mpa
my Mgy -+ My,
H1 M2 0 fdn

in which

ADMpy - Imy D p,

10



mj = (m;‘,,mw, Ly Myj) € Pary,, 5 =0,1,...,n,
( ]na'rnZ ny o 7nﬂ.n)»

My 0,20y« + + y M)

Consider next the triangular GT pattern with 2n rows and partition (A, 0"), X €
Par, as follows:

( /\] )\Q e A,ﬂ 0 .. 0 \
Mip~1 M1 Mpn-] O t 0 .
: : A ] 0
™My ,2 mga - Mmpa 0 0 - [ m (0)
m],] 7”:2’1 e mn'l O ( /1; ) N
H Ho o ln l
\ l )

where (‘l‘) is an ordinary triangular GT pattern with n rows. Notice that in this
notation p is included both as the bottom row in the skew pattern [ ’\T{l” ] and

as the top row in (”) We then have the one-to-one correspondence between

patterns in which we choose the entries l;; in (%) to be maximal, that is,
Li=pni=142,...,n-11i=1,2,...,n— 1.

Mup | [%’L] (0)
[741] (m%m)

The following D™ ") —polynomials, which are labeled by a pair of Gelfand-

Tsetlin pattern having partition (A,0"),A € Pary, are fully defined, as dis-
cussed in Section 2.2:

\ (1) )

We now define the following polynomials, which are labeled by double skew
GT patterns, as the special case of these polynomials corresponding to choos-

11



. l .
ing the patterns (%) and (L) to be maximal:

( (™)
m' m/
D[A//.L:’(Z)xl) [/\}(0)

m
\ ( rea )

with weights of lower and upper patterns given by

TN
o;n
No

N

v = (p, @), a = weight of [ /\/nu' ] ,
v = (u, '), & = weight of [ )\n/ﬁ ] :

These polynomials then have the following properties, as expressed in terms
of the matrices of dimension

DimDMH(Z) = Y~ K(\p,a),

€Wy /y
which are obtained by using the lower patterens [ )‘T/n“ ] to label rows and the

/
upper patterns [ /\W/Zu ] to label columns:

1. Multiplication of D**(Z) matrices:
DMH(X)DMH(Y) = DMH(XY),

for arbitrary matrices X and Y. This multiplication property is a di-
rect consequence of the definition of these matrices, the multiplication

property for ordinary D*(Z) matrices, and the fact that the restriction
to maximal labels propagates through products.

2. Matrix skew Schur function:

DMH(Z) ~ N b, D¥(Z).

3. Diagonal properties:

DM*(diag(zy, g, ., Tp)) = D @225 - 5 Ik (3,
aeWy,,

Ik (3jun) = identity matrix of dimension K(M\/py, @),
DM¥(I) = Ipima/a-

12



4. Relation o skew Schur functions:
. - A
Sx/ul®) = E ¢ (),
v
TraceD*(diag(xy, Ty, ..., Tn)) = $2/,(T)

5. Importance for physics: The matrices DM#(Z) give a new class of re-
ducible integer representations of G L(n,C) for Z € GL(n,C), and, simi-
larly, for U(n) by choosing Z € U(n). We expect to uncover a wealth of
other properties for various choices of the variables Z.

5 Words of Semistandard Skew Tableau and Skew GT
Patterns

The notion of a word of a words of semistandard skew tableau and skew
GT patterns is equivalent to that of weight, but the former is more closely
related to the notion of a lattice permutation. The enumeration of lattice

permutations of a certain type gives the Littlewood-Richardson numbers c};\,,,,

which, in turn, among other occurrences, are important quantities for reducing
Kronecker products of irreducible representations of U(n). In this section, we
give some basic definitions and properties of words, as follows:

The standard form of a sequence of repeated 1's,...,n's : Let & = (o4, ag,...,ap)

be a sequence of non-negative integers with |a| = k. The weakly increasing
sequence defined by

(1,2, -,n)% = 1%12%2 ... pn
is called the standard form or type of any sequence
A = ajayg...ak, a1+ 209+ -+« +no, =k

éontaining o7 1's,a9 2's,...,0n n's. We denote the set of all such sequences
by Ax(a), which then has cardinality given by the multinomial coefficient:

[Ak(a)] = ( al,ag,k...,an ) '

5.1 Word of a Semistandard Skew Tableau of Shape A —
Row ¢ of the semistandard skew tableau

I 2 integerﬂ__) weakly increasing across each row
shape p [ .)\2 — pig integers |

removed : | stictly increasing down each column
[An — pn integers|

is filled out as follows:

13



l,’J Vs l,‘vg 2s li.ﬂ n's

1l tlel - {2l o Inl o n|l M-

Then, by reverse (right-to-left) reading of row i we obtain the sequence
P . llQ lﬂ
LA = nhn ... 9l

The word of this semistandard skew tableau of weight « is the sequence defined
by

(2) {n)
L'\/#( ) L\/uL/\/u e L/\y;u’
where the weight « is given by

Q= (Ch,(lg,...,an), ;= 11,_7' -+ 12,]' 4+ ln.j,j =1,2,...,n
This word sequence is of type (1,2,...,n)% The n? non-negative integers
€= (lij)igijen

apl]))]earing in this word must, of course, fulfill the rules for a semistandard skew
tableau.

5.2 Word of a Skew Gelfand-Tsetlin Pattern of Shape A —
Consider again the skew GT pattern

/\] Ag oo An
[ A J _ My j—1 M2 -1 Mgy j-1
m : ’
My M2y 0 Myt
Hi H2 - Hn
which has weight
a = (lmy] = [mol, [ma| ~ [mal,..., [Ma| = [Mn-1).

The i— th Ieft diagonal (i = 1,2,...,n) of this pattern is mapped to the se-
quence LA 5,0 that s,

Min
smim——y LA/ - TL M 2l12 111]

mia
mio

1
where the non-negative integers l; ; = m;; — m; ;1,7 = 1,2,...,n, are read as

successive differences along this diagonal. This sequence of type (1,2,...,n)®
defines the word of this skew pattern:

L[/\/M] L L@ L pm

Ap A/ A

14



Since the bijection
BLIECTION
Taj o= Gy
is exactly the one-to-one correspondence given by setting l; j = my j~m; ;1,7 =
1,2,...,n in row i of the semistandard skew tableau, eachi=12 ...,n, the
words of Ty, and G/, are all identical:

7| AMu . ,
Ly (€) = L [ m ] , for all patterns

Notations:
Ly/u(a) = set of all words of type (1,2,...,n)* of semistandard skew
tableaux or skew GT patterns of shape A — p,
Ly = set of all words of semistandard skew tableaux or skew GT

patterns of shape A — .

6 Iﬁattice Permutations and Littlewood-Richardson Num-
ers

The properties of the Littlewood-Richardson numbers c;),, are basic to the

reduction of Kronecker products of D*—polynomials and to the reduction of

skew D’V"—po].ynomia.ls, which is one of the reasons we study them. Their
relation to lattice permutations is one such fundamental property. First, we
define a lattice permutation.

6.1 Lattice Permutations A word
Ap = 0a10g...05...a; € Ag(a)

of type (1,2,...,n)* is a lattice permutation if and only if Rule L as follows
is true:

Rule L : In each left factor A; = ajas...05,1 < j <k, of Ay
the number of i's is greater than or equal to the number of i+ 1's

It follows from this rule that the sequence « is a partition,which we hence-
forth denote by v.

From now on, we develop all further results in the lJanguage of skew Gelfand-
Tsetlin patterns , although all results could be rephrased In the language of
semistandard skew tableau.

Notations:Let A, pu,v € Par, with pu,v C X\ JA = |y + |v|. Define the
following sets:

Ga/u(v) = {subset of G, of weight v },

15



Gy, = {subset of G,,(v) having words that are lattice permutations },
La/.(v) = {set of words corresponding to all patterns in Gy/,(v) }

IL;\W = {set of lattice permutations corresponding to all patterns in G,’)’U}

5.2 Littlewood- Richardson Numbers
Let A, ju, v € Par,,. The Litllewood-Richardson number Cﬁu are given by

= IIL;\W , dor v C AN = |+ (v
L 0, otherwise

(See Littlewood and Richardson,'® Macdonald,'’ Stanley.” ) Thus, a basic

problem is: -
Find the set of words L2, .

We shall not solve this problem here, but we can find a subset of Gy/,(v)

that contains L} ,, and this narrows considerably the problem. For this, we
make the following two observations:

Observation 1: A skew GT pattern can be split by the minor diagonal of the
parallelogram into two triangular patterns as follows:

= 1))

Examples for n = 2,3 :

A A2
THMTTLQ,]
[3] M2

The pattern (,),) is anormal triangular GT pattern with n rows in which mj ; =

mi;t = 1,2,...,n;5 = 1,2,...,4. The pattern ("f\") is a normal inverted
triangular GT pattern with n rows in which

N (O R .
My 5 = Mp—jtin—jrJ = 1,2, ..,mt=1,2,...,7J.

= (mll,na mlz,m <o ’m:z,n)'

Of course, the entries in these two triangular patterns are consirained by the
betweenness relations for the full skew pattern.

Observation 2: For word of a skew GT' pattern to be a lattice permutation, it

16



is necessary that the pattern (,;\v) be maximal, that is,

'\l /\9 ’\n
Mo A e A

: maximal pattern
At A
M

Proof. The word of a skew GT pattern is

A _ @ (n)
L [ ™m ] = L= Lyju L»\/u v Ly

In order that this word be a lattice permutation, the following conditions are
necessary:

LE\1/),4 = plto ... 982180 can have no entries to the left of 14'; hence,
ha=hpn1=lLa=0
LE\Q/)# = pan ... 222123 can have no entries to the left of 2/22: hence,

lon = lyp-1 =13 =0

L(;/)“ = phin . 242150 can have no entries to the left of i4; hence,

im=1lin1=1liiz1 =0

Lf\’;)” = plnn .. 9l2 1l can have no entries to the left of n'»»: hence,
no condition

This collection of conditions
lij=0, equivalently, m;; ; =mj;j=i+1i+2,---,ni=12,---,n~—1

are just the conditions that the pattern () be maximal, so that

] = () (0] 0

The word of this special skew GT pattern is

E (e ), 0)]

— 111,1 2l2.2 1l2,1 313.1 2l3.2 1l3.3 . nln,n .o 9ln2 plng

This result can be put in better form: The information is fully encoded
in the inverted pattern ("L' ) and the boundary right diagonal (A1, Ag, -+, An)
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of the pattern (mAm,) We rearrange as follows: The inverted pattern is put in

normal un inverted form, keeping the A—diagonal, and removing the double
prime from m;; to arrive at the modified Gelfand-Tsetlin patiern given by

O o o s
/\1 Myp-1 Mon-1 ' Myoin-
( A/“ ) = )"2 Myp-2 Mon.2 Myo2n-2
m = . y
/\11——1 My
n

in which §§ designates that no entry is placed in that position. The word above
is now given by

m N N st

v

by . Y , - :
L( / — ]7].1 2T2.2 ]72,) e &7'1,1 . _\?n.? ]‘rl,ll e p’rn'n Ve 2'“1,2 ’I’I,’"'L,

where the exponents of the i—th partial word are read ofl the i—th right
diagonal of the pattern:

Hi = m,-m
Mi-1n-1
My m—2
' Tid oL L, OTL2 1T
. — ] 1,4 2 i 1 i ,

min—i+l1
Ai = Mo pei

where the
Tij = Mimjtin-jtl = Micjn—gy J =51 = 1,...,1,

are the successive difference between the entries along the diagonal.
The weight of a modified Gelfand-Tselin pattern is defined by

A
o = W( VQ) = (0, 00,...,0m),04 = Tig + Tigri + .o+ Ty,

in which o; denotes the number of i’s that appear in the word L(’\T{L #). Thus,
the word L(*/*) is of type (1,2,...,n)"

Given u, X € Par,, with 4 C ), the entries in a modified Gelfand-Tsetlin
patterns satisfy all the standard betweenness relations, and the presence of ()

serves only to fill out the triangular array, and be a reminder that A\; may be
as large as one pleases.

Notations:
MLy, = {set of words L(*/*) ‘ m runs over all values

for which (*/#) is a modified GT pattern}
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MULyu(v) = {subset of MLy, I W(/\g“') =12 ,\}

ML}, , = {subset of words in MLy,,(v) that are lattice permutations} .

By design, a modified GT pattern captures all those words in L, . (v) that
can possibly be lattice permutations, that is, MIL;} = ILA Accordingly, we
have that, for p, v, A € Par, with g, C X and |A| = |u] + Iul then

=ML} | =L, I
Examples:
n=2:
0w o
Al oMy
A2

>WO]"d = 1)‘1'“1“ 2}\2—"11,1 lm;,;-—pg
word = lattice permutation if and only if Ay — 1 2 Ay —ma 5.

Recall the familiar angular momentum addition rule as given by the Clebsch-
Gordan series
J1+J2
(271 0)®(2520) = > & + 2+ 41 + 2 — 5), for j1 > o
J=ji—Jj2
for which p = (241 0),v = (2520), A = (j1 + j2 + j, 51 + ja — 7). The unique
modified GT pattern of weight v = (24, 0) is

0 2y 0 et 0 o
]] +]2+] . ,7] +32_7 > word = 192—71+i 9 1.7]+.72"J = |42
NtJ—J

Thus,the values of the total angular momentum j are ezactly those for which
the OT pattern satisfies betweenness, each such j yielding the same lattice
permutation of weight (275 0). We conclude:

C(.71+.72'+.71.71+J2'“.7) l,each j =gy — do,n —Jo+1,..., 51 + J2;
(241 0),(242 0) 0, otherwise

n=3

0 wm 2 2%]
Al Mmag Map
Ag mi

A3

word = M THIQ 21,2 M1 2 U2 GAB—I,19M1,1 —N2,2 | M2,2THS
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weight == v = (A — fig -+ My g ~ pg + Mg — g,
Ay — My + My — Mg, Az — Myy).

Numerical example 1: g = (4,2,0), v = (5,4,1), X = (7,6,3). There are three
modified GT' patterns of type (1,2,3)(B41) = 15243}

O 4 2 0
7 6 2 9 2 — 1329312 (non lattice)
3
0 4 2 0
7 63 . - 1328178120 1Y (lattice)
3
6 4 2 0
7 6 4 ) 0 - 1322128122 (lattice)
3

763
Therefore: C§420;,(541) = 2.
Numerical example 2: p = (2,2,2),v = (5,4,1),A = (7,6,3). There is one
modified GT patterns of type (1,2,3)®41) = 152431 .

0 2 2 2
7 6 2 9 2 b 19243 (lattice)

(763)

Therefore: Cla29)(541) = 1.

It is tractable to carry the above forward and derive necessary and sufficient
conditions that a pattern in the set of modified GT patterns corresponds to a
lattice permutation of given weight. This is important for the theory of tensor
operators in U(n).

The D—polynomials corresponding to modified GT' patterns can also be
givgn, since they occur as specializations of the general polynomials discussed
in Section :

l/
() l,
U max '
D(x\{u>(Zzn)=D [m}] ) | (Z)=D| A ’; 0 | (Zusa).
l
. (f)



The dependence of these polynomials on only those variables occurring in the

(n+ 1) x (n+1) submatrix Z,.; of the 2n x 2n matrix Z,, is a consequence of
mar

the choice of maximal labels im the skew pattern | A/p |, which gives the
max

weights of the lower and upper patterns as

v=(a,0"), & = (a,0"),

axw(ﬁ;), a':W(;f).

We have not yet worked out the properties of these polynomials labeled by
pairs of modified Gelfand-Tsetlin patterns.

Acknowlegements Work performed under the auspices of The U, S. De-
partment of Energy, contract W-7405-ENG-36. We thank the organizers for
the opportunity for discussions with conference members, for the presentation
of the 1deas in this article, and for their timely publication by Worid Scientific.

References

1. L. C. Biedenharn and J. D. Louck, Angular Momentum in Quanium
Physics; The Racah-Wigner Algebra in Quantum Theory, in: Encycl. of
Mathematics and Its Applications, ed., G.-C. Rota, Vols. 8 and 9 (Cam-
bridge Univ. Press, Cambridge, 1981).

2. J. D. Louck and L.C. Biedenharn, Adv. Quant. Chem. 23, 127 (1992).
3. W.Y.C. Chen and J. D. Louck, Adv. Math. 140, 207 {1998).

4. J. D. Louck, New Perspectives on the Unitary Group and its Tensor Oper-
ators, in: Symmetry and Structural Properties of Condensed Matter, eds.,
T. Lulek, B. Lulek, and A. Wal; Proc. sixth SSCPM (World Scientific,
Singapore, 2001) pp. 23-36.

5. H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New
York, 1949.

6. 1. M. Gelfand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71, 825 (1950);
reproduced in .M. Gelfand, R.A. Minlos, and Z. Ya. Shapiro, Represen-
tations of the Rotation and Lorentz Groups and their Applications (Perg-
amon, New York, 1963).

7. R. P. Stanley, Enumerative Combinatorics, Vol. 11, Cambridge University
Press, United Kingdom, 1999,

8. J. D. Louck and L. C. Biedenharn, Commun. Math. Phys. 8, 89 (1968).

9. J. D. Louck and L. C. Biedenharn, Adv. Appl. Math. Suppl. Issue 10 ,
239 (1981).

10. D. E. Littlewood and A. R. Richardson, Phil. Trans. A 233, 99 (1934).

11. 1.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Uni-
versity Press,Llondon/New York, 1979. '

21



